42x^2-476x-2494=0

Simple and best practice solution for 42x^2-476x-2494=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42x^2-476x-2494=0 equation:


Simplifying
42x2 + -476x + -2494 = 0

Reorder the terms:
-2494 + -476x + 42x2 = 0

Solving
-2494 + -476x + 42x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-1247 + -238x + 21x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-1247 + -238x + 21x2)' equal to zero and attempt to solve: Simplifying -1247 + -238x + 21x2 = 0 Solving -1247 + -238x + 21x2 = 0 Begin completing the square. Divide all terms by 21 the coefficient of the squared term: Divide each side by '21'. -59.38095238 + -11.33333333x + x2 = 0 Move the constant term to the right: Add '59.38095238' to each side of the equation. -59.38095238 + -11.33333333x + 59.38095238 + x2 = 0 + 59.38095238 Reorder the terms: -59.38095238 + 59.38095238 + -11.33333333x + x2 = 0 + 59.38095238 Combine like terms: -59.38095238 + 59.38095238 = 0.00000000 0.00000000 + -11.33333333x + x2 = 0 + 59.38095238 -11.33333333x + x2 = 0 + 59.38095238 Combine like terms: 0 + 59.38095238 = 59.38095238 -11.33333333x + x2 = 59.38095238 The x term is -11.33333333x. Take half its coefficient (-5.666666665). Square it (32.11111109) and add it to both sides. Add '32.11111109' to each side of the equation. -11.33333333x + 32.11111109 + x2 = 59.38095238 + 32.11111109 Reorder the terms: 32.11111109 + -11.33333333x + x2 = 59.38095238 + 32.11111109 Combine like terms: 59.38095238 + 32.11111109 = 91.49206347 32.11111109 + -11.33333333x + x2 = 91.49206347 Factor a perfect square on the left side: (x + -5.666666665)(x + -5.666666665) = 91.49206347 Calculate the square root of the right side: 9.565148377 Break this problem into two subproblems by setting (x + -5.666666665) equal to 9.565148377 and -9.565148377.

Subproblem 1

x + -5.666666665 = 9.565148377 Simplifying x + -5.666666665 = 9.565148377 Reorder the terms: -5.666666665 + x = 9.565148377 Solving -5.666666665 + x = 9.565148377 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.666666665' to each side of the equation. -5.666666665 + 5.666666665 + x = 9.565148377 + 5.666666665 Combine like terms: -5.666666665 + 5.666666665 = 0.000000000 0.000000000 + x = 9.565148377 + 5.666666665 x = 9.565148377 + 5.666666665 Combine like terms: 9.565148377 + 5.666666665 = 15.231815042 x = 15.231815042 Simplifying x = 15.231815042

Subproblem 2

x + -5.666666665 = -9.565148377 Simplifying x + -5.666666665 = -9.565148377 Reorder the terms: -5.666666665 + x = -9.565148377 Solving -5.666666665 + x = -9.565148377 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.666666665' to each side of the equation. -5.666666665 + 5.666666665 + x = -9.565148377 + 5.666666665 Combine like terms: -5.666666665 + 5.666666665 = 0.000000000 0.000000000 + x = -9.565148377 + 5.666666665 x = -9.565148377 + 5.666666665 Combine like terms: -9.565148377 + 5.666666665 = -3.898481712 x = -3.898481712 Simplifying x = -3.898481712

Solution

The solution to the problem is based on the solutions from the subproblems. x = {15.231815042, -3.898481712}

Solution

x = {15.231815042, -3.898481712}

See similar equations:

| 0=b(b+6) | | 3(4d-7)-6=2d+2-1 | | 2x-20y=14 | | .25X+.5X+2X+1=100 | | -b-28= | | .25+.5X+2X=100-1 | | 3x^4+12x^2-5=0 | | 5x^2-11-17=0 | | 9ab=45a | | 7(5n-4)-10(3n-2)=0 | | 11x-55=-121 | | d-8t=13t | | 5+2x-5=2+4 | | h(6)=3n | | 2-n(5)=30 | | 2r^2-3r=27 | | (.25+.5X+2X)+1=100 | | 4x^3+48x^2+108=0 | | 3+n(4)=16 | | 4w^2+4w+1=75 | | x-56=2 | | 4x^3-36x-4=0 | | -18=-16x | | (.25+.5X+2X)-1=100 | | 7x+6=11x | | (4y-3)(2y+3)-8y(y-4)=0 | | x+31=17 | | 8r^3-t^3= | | 3/4=5x+1/7 | | x^2+3x+5=6 | | 40+4y-12=15y-12-3y | | .25+.5X+2X-1=100 |

Equations solver categories